入门资料
- Hacker’s guide to Neural Networks[Link]
- Probabilistic Programming & Bayesian Methods for Hackers[Link]
- Visualizing MNIST: An Exploration of Dimensionality Reduction[Link]
- Data Science in Python[Link]
- Bayesian network与python概率编程实战入门[Link]
Deep Learning
- DEEP LEARNING(An MIT Press book in preparation)[Link]
- Neural Networks and Deep Learning[Link]
- Unsupervised Feature Learning and Deep Learning[Link]
- TUTORIAL ON DEEP LEARNING FOR VISION[Link]
- Quoc Le’s Lectures on Deep Learning[Link(视频)]
- Deep Learning Master Class[Link(视频)]
- 深度学习进阶线路图[Link]
- 深度神经网络DNN的多GPU数据并行框架及其在语音识别的应用[Link]
- 解密接近人脑的智能学习机器——深度学习及并行化实现[Link]
- 看DeepMind如何用Reinforcement learning玩游戏[Link]
资源整合
- Some of useful machine learning resources from beginner to intermediate[Link]
- My deep learning reading list[Link]
- Where to Learn Deep Learning – Courses, Tutorials, Software[Link]
- Deep Learning – important resources for learning and understanding[Link]
- A curated list of awesome Machine Learning frameworks, libraries and software[Link]
- 个人阅读的Deep Learning方向的paper整理[Link]
竞赛与数据
- kaggle:The Home of Data Science[What are some alternatives to Kaggle?]
- DRIVENDATA:Data science competitions to save the world
- 百度:百度开放研究社区
- 阿里巴巴:天池大数据科研平台
- 360:360开放实验室
- 卖数据的:数据堂
- machine learning data set repository:mldata
- machine learning open source software:mloss
竞赛经验谈
- CIKM Competition数据挖掘竞赛夺冠算法-陈运文
- Kaggle Competition Past Solutions
- Winning solution of Kaggle Higgs competition: what a single model can do?
Demos & Codes
- Toronto Deep Learning Demos
- ConvNetJS Deep Q Learning Demo
- 100 Best GitHub: Deep Learning
- cuda-convnet2
- Deep Visual-Semantic Alignments for Generating Image Descriptions
视频课程
####Machine Learning[Stanford University][Coursera、CS229]
Instructors:Andrew Ng
####Learning From Data[California Institute of Technology]
Instructors:Yaser S. Abu-Mostafa
####機器學習基石 (Machine Learning Foundations)[國立台灣大學][Coursera]
Instructors:Hsuan-Tien Lin(林軒田)
####機器學習技法 (Machine Learning Techniques)[國立台灣大學][Coursera]
Instructors:Hsuan-Tien Lin(林軒田)
####Introduction to Machine Learning[Carnegie Mellon University][土豆2013][Youtube2015]
Instructors:Alex Smola
参考教材:Introduction to Machine Learning[下载]
####Machine Learning[Carnegie Mellon University]
Instructors:Tom Mitchell
####Machine Learning[Cornell University]
Instructors:Thorsten Joachims
####Machine Learning[University of Washington][Coursera]
Instructors:Pedro Domingos
预览可看视频
####Big Data, Large Scale Machine Learning[New York University][Video]
Instructors:John Langford and Yann LeCun
####Probabilistic Graphical Models[Carnegie Mellon University]
Instructors:Eric Xing
####Probabilistic Graphical Models[Stanford University][Coursera]
Instructors:Daphne Koller
####Neural Networks for Machine Learning[University of Toronto][Coursera]
Instructors:Geoffrey Hinton
####Discrete Inference and Learning in Artificial Vision[École Centrale Paris][Coursera]
Instructors:Nikos Paragios and Pawan Kumar
####Intro to Machine Learning: Pattern Recognition for Fun and Profit[Stanford University][Udacity]
Instructors:Sebastian Thrun
####Machine Learning[Georgia Institute of Technology][Udacity][Supervised Learning, Unsupervised Learning, Reinforcement Learning]
Instructors:Charles Isbell and Michael Littman
####Statistical Learning[Stanford University]
Instructors:Trevor Hastie and Rob Tibshirani
参考教材:An Introduction to Statistical Learning, with Applications in R[下载]
####机器学习导论[上海交通大学]/统计机器学习[上海交通大学]
Instructors:张志华
####Introduction to Recommender Systems[University of Minnesota][Coursera]
Instructors:Joseph A. Konstan & Michael D. Ekstrand
####计算广告学[网易云课堂]
Instructors:刘鹏
####机器学习[龙星计划2012]
Instructors:余凯 & 张潼
####信息处理和人工智能的深度学习[龙星计划2013]
Instructors:邓力
####Large Scale Machine Learning[University of Toronto]
Instructors:Russ Salakhutdinov
參考教材:
- Christopher M. Bishop (2006) Pattern Recognition and Machine Learning, Springer.
- Machine Learning: A Probabilistic Perspective, by Kevin P. Murphy.
- Trevor Hastie, Robert Tibshirani, Jerome Friedman (2009) The Elements of Statistical Learning
- David MacKay (2003) Information Theory, Inference, and Learning Algorithms
####Artificial Intelligence[University of California, Berkeley][Edx]
Instructors:Dan Klein & Pieter Abbeel
####Statistical Machine Learning[Carnegie Mellon University]
Instructors:Ryan Tibshirani & Larry Wasserman
####Deep Learning[New York University]
Instructors:Yann LeCun
####Machine Learning[The University of British Columbia (Youtube)][University of Oxford]
Instructors:Nando de Freitas